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1 Introduction

Let’s say we want to create the two charts in Figure 1. The chart on the left is a bar chart
that shows two different values for each bar. The chart on the right consists of two line
charts that share the x axis with parts of the timeline highlighted using two different colors.

Many libraries that can draw bar charts and line charts, but adding those extra features
will only be possible if the author already thought about your exact scenario. Google
Charts (Google, 2020) supports the left chart (it is called Dual-X Bar Chart) but there
is no way to add a background, or sharing an axis between charts. The alternative is to
use a more low-level library. In D3 (Bostock et al., 2011) you construct the chart piece by
piece, but you have to tediously transform your values to coordinates in pixels yourself.
For scientific plots, you could use ggplot2 (Wickham, 2016), based on the Grammar of
Graphics (Wilkinson, 1999). A chart is a mapping from data to geometric objects (points,
bars, lines) and their visual properties (x and y coordinate, shape, color). However, the
range of charts that can be created using this systematic approach is still somewhat limited.

What would an elegant functional approach to data visualization look like? A functional
programmer would want a domain-specific language that has a small number of primitives
that allow us to define high level abstractions such as a bar chart and that uses domain
values such as the exchange rate, rather than pixels, in its basic building blocks.

Fig. 1. Two charts about UK politics: Comparison of election results from 2017 and 2019 (left) and
GBP/USD exchange rate with highlighted areas before and after the 23 June 2016 Brexit vote.



ZU064-05-FPR paper 12 June 2020 11:44

2 Tomas Petricek

0                    50                 100                150                200                 250   

0               0.5              1  0              0.5              1  0              0.5                1
Conservative                      Labour LibDem

Fig. 2. On a continuous scale (above), an exact position is determined by a number. On a categorical
scale (below), an exact position is determined by the category and a number between 0 and 1.

As is often the case with domain-specific languages, finding the right primitives is more
of an art than science. For this reason, we present our solution, a library named Compost, as
a functional pearl. We hope to convince the reader that Compost is elegant and we illustrate
this with a wide range of examples. Compost has a number of specific desirable properties:

• Concepts such as bar charts, line charts or charts with aligned axes are all expressed
in terms of more primitive building blocks using a small number of combinators.
• The primitives are specified in domain terms. When drawing a line, the value of a

y coordinate is an exchange rate of 1.36 USD/GBP, not 67 pixels from the bottom.
• Most common chart types can be easily captured as high level abstractions, but there

is a way of creating a majority of more interesting custom charts.
• The approach can easily be integrated with the Elm architecture (Czaplicki, 2012) to

creating web-based charts that involve animations or interaction with the user.

The presentation in this paper focuses on explaining the primitives and combinators of
the domain-specific language. We outline the structure of an implementation, but omit the
details; filling those in merely requires careful thinking about geometry and projections. An
F# implementation, including all our examples, is available at: http://github.com/compostjs.

2 Basic charts: Overlaying chart primitives

We introduce individual features of the Compost library gradually. The first important
aspect of Compost is that properties of shapes are defined in terms of domain-specific
values. In this section, we explain what this means and then use domain-specific values to
specify the core part of the UK election results bar chart.

2.1 Domain-specific values

In the election results chart in Figure 1 (left), the x axis shows categorical values represent-
ing the political parties such as Conservative or Labour. The y axis shows numerical values
representing the number of seats won such as 365 MPs. When creating data visualizations,
those are the values that the user needs to specify. This is akin to most high-level charting
libraries such as Google Charts, but in contrast with more flexible libraries like D3.

Our design focuses on two-dimensional charts with x and y axes. Values mapped to those
axes can be either categorical (e.g. political parties, countries) or continuous (e.g. number
of votes, exchange rates). The mapping from categorical and continuous values to positions
on the chart is done automatically. We discuss this in Section 2.3.
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v = cat c,r
| cont n

s = line γ, [vx1,vy1, . . . ,vxn,vyn ] | overlay [s1, . . . ,sn ]
| fill γ, [vx1,vy1, . . . ,vxn,vyn ] | axisl/r/t/b s
| text γ,vx,vy, t | padding nt ,nr,nb,nl ,s
| bubble γ,vx,vy,w,h

Fig. 3. Core primitives of the Compost domain-specific language. Values v are either categorical or
continuous; a shape s is then defined as a simple recursive algebraic data type.

For example, in the UK election results chart, the x axis is categorical. The library auto-
matically divides the available space between the six categorical values (political parties).
The value Green does not determine an exact position on the axis, but rather a range.
To determine an exact position, we also need to attach a value between 0 and 1 to the
categorical value. This identifies a relative position in the available range.

Figure 2 illustrates the two kinds of values using the axes from the UK election results
chart. In Figure 3, we define a value v as either a continuous value cont n containing any
number n or a categorical value cat c,r consisting of a categorical value c and a number r
between 0 and 1. As discussed in Section 2.4, continuous and categorical values can also
be annotated with units of measure to make the values more descriptive.

2.2 Basic primitives and combinators

Now we can define the basic elements of the Compost domain-specific language. A chart
element is represented by the shape s defined in Figure 3. A primitive shape can be a text
label, a line connecting a list of points, a filled polygon defined by a list of points or a
bubble at a given point with a given width and height. The position of points is specified
by x and y coordinates, which can be either categorical or continuous values. For text, line,
polygon and bubble, we also include a parameter γ that specifies the element color. The
width and height of a bubble is given in pixels rather than in domain units.

Figure 3 also defines three combinators. The most important is overlay, which overlays
given shapes. When doing this, Compost infers the range of values on the x and y axes and
calculates suitable projections using a method discussed in the next section. The padding

combinator adds padding around a specified shape and axis adds an axis showing the
inferred scale on the left, right, top or bottom of a given shape. Using those primitives,
we can construct the simple UK election results bar chart in Figure 4 (left):

let conservative, labour =

fill #0000ff, [ (cat Conservative,0),(cont 0),(cat Conservative,0),(cont 365),
(cat Conservative,1),(cont 365),(cat Conservative,1),(cont 0) ],

fill #ff0000, [ (cat Labour,0),(cont 0),(cat Labour,0),(cont 202),
(cat Labour,1),(cont 202),(cat Labour,1),(cont 0) ]

axisl (axisb (overlay [ labour,conservative ]))

We use the let construct of the host functional language to structure the code. The chart
specification overlays two bars of different colors and then adds axes to the bottom and
left of the chart. The two bars are filled rectangles defined using four corner points. The
y coordinates are specified as continuous values, while the x coordinates are categorical.
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Fig. 4. Simple chart showing the UK election results; using automatically inferred scales (left) and
using rounded Y scale and explicitly defined (reordered) X scale (right).

For the Conservative party, two of the points have the y coordinate set to cont 0 (bottom
of the bar) and two have the y coordinate set to cont 365 (top of the bar). The two x
coordinates are the start and the end of the range allocated for the Conservative category,
i.e. cat Conservative,0 on the left and cat Conservative,1 on the right.

Extending the snippet to generate a grouped bar chart that shows two results for each
party as in Figure 1 is not much harder. Given a party p, we need to generate two rectangles,
one with x coordinates cat p,0 and cat p,0.5 and the other with x coordinates cat p,0.5
and cat p,1. In the following snippet, we use a for comprehension to generate the list. All
remaining constructs are primitives of the Compost domain-specific language. Assuming
elections is a list of election results containing a five-element tuple consisting of a party
name, colors for 2017 and 2019 and results for 2017 and 2019 we create the chart using:

axisl (axisb (overlay [

for party,clr17,clr19,mp17,mp19 in elections →
padding 0,10,0,10, overlay [

fill clr17, [ (cat party,0),(cont 0),(cat party,0),(cont mp17),

(cat party,0.5),(cont mp17),(cat party,0.5),(cont 0) ],
fill clr19, [ (cat party,0.5),(cont 0),(cat party,0.5),(cont mp19),

(cat party,1),(cont mp19),(cat party,1),(cont 0) ] ] ] ) )

Aside from iterating over all available parties and splitting the bar, the example also adds
padding around the bars. This is specified in pixels rather than in terms of domain values.
A similar result could be be achieved by drawing a bar using a range from 0.05 to 0.5, but
specifying padding precisely in pixels is sometimes preferable. The chart is still missing a
title, which we add in Section 4.

2.3 Inferring scales and projections

We follow the terminology of Vega (Satyanarayan et al., 2015) and use the term scale to
refer to the mapping of values to positions on a screen; a coordinate is a value representing
a position on a scale and the term axis is used to refer to the visual representation of a scale.

Scales are an important concept in Compost. When composing shapes using the overlay

primitive, the user does not need to specify how to position the child elements relatively to
each other. The Compost library positions the elements automatically. This is done in two
steps. During pre-processing, Compost infers the scales for x and y axes. A scale represents
the range of values that needs to fit in the space available for the chart. When rendering a
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l = continuous nmin,nmax | categorical [c1, . . . ,ck ]

Fig. 5. A scale l can be continuous, defined by a range, or categorical, defined by a list of values.

s = roundScalex/ys | nestx/y vmin,vmax,s
| explicitScalex/y l,s | (. . .)

Fig. 6. Additional combinators for controlling and nesting scales, extending earlier definition of s.

shape, Compost projects domain-specific values to the available screen space based on the
inferred scale. A scale l is defined in Figure 5. A continuous scale is defined by a minimal
and maximal value that need to be mapped to the available chart space. A categorical scale
is defined by a list of individual categorical values. Note that we do not need a minimal
and maximal ratios of the used categorical values as Compost will use an equal space for
each category, regardless of where in this space a shape needs to appear.

Scale inference is done by a simple recursive function that walks over the given shape
and constructs two scales for the x and y axis, using the x and y coordinates that appear
in the shape. Most of the work is done by a simple helper function that takes two scales,
l1 and l2, and produces a new scale that represents the union of the two:

union (continuous nl ,nh) (continuous n′l ,n
′
h) =

continuous min(nl ,n′l),max(nh,n′h)

union (categorical [c1, . . . ,cp ]) (categorical [c′1, . . . ,c
′
q ]) =

categorical [c1, . . . ,cp ] @ [c′i | ∀i ∈ 1 . . .q,@ j.c j = c′i ]

When unioning two continuous scales, the minimum and maximum of the resulting scale is
the smallest and largest of the two minimums and maximums, respectively. When unioning
two categorical scales, we take all values of the first scale and append all values of the
second scale that do not appear in the first one. Note that this means that the order of
categorical values in a scale depends on the order in which they appear in the shape. (A pos-
sible improvement to Compost would be to support ordinal values, which are categorical
values with a well-defined ordering.) It is also worth noting that a categorical scale cannot
be combined with a continuous scale. In other words, mixing categorical and continuous
values in a single scale results in an error.

The scales inferred during pre-processing are later used when rendering a shape. We
discuss the implementation in Section 6. The key operation is projection which, given
a coordinate, a scale and an area on the screen, produces a position on the screen. For
a continuous scale, the projection is a linear transformation. For categorical scale with
k values, we split the available chart space into k equally sized regions and then map a
categorical value cat c,r to the region corresponding to c according to the ratio r.

2.4 Types and units of measure

We introduce the Compost domain-specific language as untyped, but there are some obvi-
ous ways in which types can make composing charts in Compost safer. First, a type repre-
senting a shape could specify whether the x and y axes represent categorical or continuous
values. This would rule out mixing of different values on a single scale and guarantee that
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the union operation, sketched in the previous section, is never called in a way leading to an
undefined result. Second, the type of values mapped to an axis could be further annotated
with units of measure (Kennedy, 2009). Using the F# notation where n u is a number n
with unit u, an axis containing a value cont 317 mp would then be incompatible with an
axis containing a value cont 1.32 gbp/usd .

We only outline the type system here. There are two kinds of types; σ is a type of values
and τ is a type of shapes. Assuming u denotes a unit of measure, the types are defined as:

σ = Cat u | Cont u τ = Shape σx,σy

Correspondingly, there are two kinds of typing judgements; v ` σ indicates the type of a
value, while s ` τ indicates the type of a shape. The typing rules for two of the basic chart
primitives, line and overlay look as follows:

vxi ` σx vyi ` σy

line γ, [vx1,vy1, . . . ,vxn,vyn ] ` Shape σx,σy

si ` Shape σx,σy

overlay [s1, . . . ,sn ] ` Shape σx,σy

The rule for line ensures that all X and Y values have the same types, σx and σy, respectively
and infers Shape σx,σy as the type of the shape. The rule for overlay ensures that all
composed shapes have the same type, including the type of x and y scales.

3 Advanced charts: Controlling scale composition

Most charts have one x and one y scale that are determined by the values the chart shows,
but there are interesting exceptions. The chart in Figure 1 (right) has two different y axes,
one for GBP/USD and one for GBP/EUR. In the next two sections, we look at three
combinators that control the scale inference process and what flexibility this enables.

3.1 Defining nice scale ranges

The automatic scale inference often results in scales where the maximum is a non-round
number. This leads to charts that fully utilise the available space, but may not be easy to
read. The first two primitives, shown in Figure 6 (left) allow the chart designer to adjust the
automatically inferred range of scales. The operations can be applied to either the x scale
or the y scale, which is indicated by the x/y subscript. The roundScale primitive takes the
inferred x or y scale of the shape s and, if it is a continuous scale, rounds its minimal and
maximal values to a “nice” number. For example, if a continuous scale has minimum 0 and
maximum 365, the resulting scale would have a maximum 400. For categorical scale, the
operation does not have any effect. The explicitScale operation replaces the inferred scale
with an explicitly provided scale (the type of the inferred scale has to match with the type
of the explicitly given scale). For example, the chart in Figure 4 (right) is constructed using
the following code (reusing the labour and conservative variables defined earlier):

axisl (axisb (roundScaley (explicitScalex (categorical [Labour,Conservative ]),

overlay [ labour,conservative ] )))

Reading the code from the inside out, the snippet first overlays the two coloured bars
defined earlier; it then replaces the X axis with an explicitly given one that changes the
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Fig. 7. A continuous scale with values from 0 to 6, nested in another scale.

order of the values. As a result, the bar for Labour will appear on the left, even though the
value comes later in the list of overlaid chart elements.

The code next uses roundScale to automatically round the minimum and maximum of
the continuous Y scale (showing the total number of seats). Finally, we add axes around
the shape, producing a usual labelled chart. It is worth noting that axis and roundScale

could be implemented as derived operations; roundScale would need to infer the scale of
the nested shape and then insert explicitScale with a rounded number; axis would also need
to infer the scales and then generates labels and lines in suitable locations.

3.2 Nested scales

The most interesting primitive for controlling scale composition is nestx/y. The behaviour
is similar to that of the SVG viewport (Dahlström et al., 2011). It takes two values, vmin,vmax

and a shape s as arguments and nests the scale of the shape s inside the region defined by
vmin,vmax. When inferring scales of shapes, the scale of nestx/y l,s will be a categorical or
continuous scale constructed from the values vmin and vmax, regardless of the values that are
used inside the shape s. The chart space between vmax and vmin will then be used to render
the nested shape s using its inferred scale. An example of nesting is shown in Figure 7.
Here, a chart with a continuous scale from 1.1 to 1.4 (e.g. GBP/EUR exchange rates) is
nested in the left half of another chart, which has a continuous scale from 0 to 100.

The nesting of scales can be used in a variety of ways. For example, to nest a scatter
plot showing individual data points inside a bar of a histogram, we would use cat ABC,0
and cat ABC,1 as the points that define the start and the end of the region. A simpler
use case for the combinator is showing multiple charts in a single view. For example, the
motivating example in Figure 1 (right) compares aligned line charts of exchange rates for
two different currencies. Assuming gbpusd and gbpeur are lists containing days as x values
and exchange rates as y values, we can construct a simple chart with two line charts, shown
in Figure 8 (left), using:

overlay [ nesty (cont 0),(cont 50),(axisl (axisr (axisb (line #202020 gbpusd))))

nesty (cont 50),(cont 100),(axisl (axisr (axisb (line #202020 gbpeur)))) ]

In this example, the x scale shows the days of the year. This scale is shared by both of the
charts. Indeed, if data was only available for the second half of the month for one of the
charts, we would want the line to start in the middle of the chart. However, the y scale needs
to be separate for each of the charts. To achieve this, we use nesty. The scale of the inner
shapes is continuous, from the minimal to the maximal exchange rate for a given period.
The outer scale is determined by the explicitly defined points. For the upper chart, these
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Fig. 8. Two charts showing currency exchange rates with a shared X scale and separate Y scales.

are cont 0 and cont 50; for the lower chart, these are cont 50 and cont 100. The continuous
values define a scale that only contain two shapes – one in the upper half, one in the lower
half – and so the three numbers could have equally been, for example, 0,1,2. The outer
scale used here is synthetic and it is not aligned with other chart elements. A chart that
does not have synthetic outer scale is pairplot, discussed in the next section.

For completeness, the following code snippet shows how to construct the full currency
exchange rate chart shown in Figure 8 (right), including the blue and red background:

let xrate (lo,hi) rates = overlay [

fill #1F77B460, [ cont 0,cont lo,cont 16,cont lo,cont 16,cont hi,cont 0,cont hi ],

fill #D6272860, [ cont 16,cont lo,cont 44,cont lo,cont 44,cont hi,cont 16,cont hi ],

line #202020 rates ]

overlay [ nesty (cont 0),(cont 50),(axisl (axisr (axisb (xrate (1.25,1.50) gbpusd))))

nesty (cont 50),(cont 100),(axisl (axisr (axisb (xrate (1.15,1.30) gbpeur)))) ]

Here, we use the let binding of the host language to define a function that takes the
data rates together with the minimum and maximum. This is used for drawing two filled
rectangles, covering the first 16 days of the view in blue and the rest in red. The shapes
combined using overlay are rendered in the order in which they appear and so the line
shape is last, so that it appears above the background.

4 Standard charts: Defining new abstractions

The functional domain-specific language design makes it easy to define high-level chart
features and chart types, known from standard charting libraries, using the low-level prim-
itives of the core language. To illustrate this, we give two examples.

First, one last remaining feature of the two charts in Figure 1 is a chart title. This can be
added to any chart using the following derived combinator:

let title t s = overlay [

nestx (cont 0),(cont 100),(nesty (cont 0),(cont 15),
explicitScalex (continuous 0,100), (explicitScaley (continuous 0,100),

text #000000,(cont 50),(cont 50), t) )
nestx (cont 0),(cont 100),(nesty (cont 15),(cont 100), s) ]

We use let in the host language to define title as a function taking a title t and a shape s.
It overlays two shapes. To position the title above the chart, the first shape has an outer y
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Fig. 9. Sample charts built using derived abstractions; a scatter plot visualizing the Iris
dataset with a title (left) and a pairplot comparing two Iris features (right).

scale continuous 0,15 while the second has an outer y scale continuous 15,100. Similarly,
the outer x scale of both is continuous 0,100. These are defined using nestx/y.

The second shape simply wraps the specified chart s to which we are attaching the title.
The first positions the text title in the middle of the available space. To do so, we explicitly
set the x and y scales inside the upper shape to continuous scales from 0 to 100 and then
position the text label in the middle, at a point (cont 50),(cont 50). Figure 9 (left) shows a
sample scatter plot chart with a title created using the title combinator.

A more complex chart that can be composed using the Compost primitives is pairplot
from the seaborn library (Waskom et al., 2014). Pairplot visualizes pairwise relationships
between features of a dataset. An example using three features (sepal width, petal width,
petal length) from the Iris dataset is shown in Figure 9 (right). A pairplot draws a grid
of charts, each visualizing the relationship between two numerical features. For distinct
features, pairplot shows a scatter plot using one feature for x values and the other for y
values. When the features are the same (the diagonal), it draws a histogram of the feature
values. A categorical feature can be used to determine the color of dots in the scatter plots.

To generate a pairplot, we use nest to overlay and align a grid of plots. Each of those
overlays a number of bubbles or filled shapes and adds left and bottom axis. As before, we
use let to define a function and list comprehensions to generate individual chart elements.
We assume that data is a list of rows, attrs is a list of available attributes and get a r obtains
the attribute a of a row r. We also assume the dataset contains the ”color” attribute.

let pairplot attrs data = overlay [

for x in attrs → for y in attrs →
nestx (cat x,0),(cat x,1),(nesty (cat y,0),(cat y,1),axisl (axisb

( if x 6= y then overlay [ for r in data →
bubble (get ”color” r), (get x r),(get y r),1,1 ]

else overlay [ for x1,x2,y in bins x data →
fill #808080 [ x1,y,x2,y,x2,0,x1,0 ] ])))]

As before, nest is essential for composing individual charts. Here, the points that determine
the locations of individual charts are categorical values defined by the attributes of the
dataset. The choice between two possible nested charts is made using the host language
if construct. Scatter plots are generated by overlaying bubbles with x and y coordinates
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s = mouseUp (λ x y→ e),s | mouseDown (λ x y→ e),s
| mouseMove (λ x y→ e),s | (. . .)

Fig. 10. Additional combinators for mouse-based interaction, extending earlier definition of s.

obtained using get x r and get y r. Histograms are composed from filled shapes. To obtain
their locations, we use a helper function bins x data, which returns a list of bins specified
by a triple consisting of a lower and an upper range x1,x2 and the count y.

The example shows that the Compost is simple yet expressive. With just a few lines of
code, we are able to construct charts that, in other systems, require dedicated libraries. The
essential aspect of the language making this possible is the automatic inference of scales
and their mapping to the available space as well as the nest operation.

5 Interactive charts: Domain-specific event handling

Many data visualizations published on the web feature interactivity. Standard forms of
interactivity include animations, hover labels or zooming. More interesting custom visu-
alizations include “You Draw It” introduced by the New York Times (Aisch et al., 2015).
The chart shows only the first half of the data, such as a timeline, and the reader has to
guess the second half before clicking a button and seeing the actual data. Standard forms
of interactivity are often supported by high-level libraries; Google Charts supports panning
using drag & drop, zooming to a selected chart range and animations. Custom interactivity
is typically implemented using low-level libraries such as D3, but doing so requires directly
handling JavaScript events and modifying the browser DOM.

5.1 Domain-specific events

Compost can be used in conjunction with a virtual-dom library to create interactive data
visualizations based on the Elm architecture (Czaplicki, 2016). An interactive visualization
is described using a pair of functions – the view function creates a chart based on the current
state and the update function specifies how the state changes when an event occurs.

To support handling of mouse-based events, Compost adds three additional primitives to
the definition of shape, shown in Figure 10. The three new primitives make it possible to
handle three common mouse events using custom functions λx y→ e, specified in the host
language. The most interesting aspect is that the functions are given x and y coordinates of
the event specified in the domain units of the chart. This means that if the user clicks on the
bar representing the Conservative party in a bar chart, the values might be, for example,
cat Conservative,0.75 for x and cont 120.5 for y .

5.2 You Draw It data visualizations

To illustrate building of interactive data visualizations using Compost, we look at one
aspect of “You Draw It”. We want to create a bar chart where the user can use drag &
drop to move individual bars. Figure 11 shows the interactive chart before and after an
interaction. The first step is to define types representing the state and events that can occur:
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Fig. 11. Interactive “You Draw it” data visualization. The user moves cursor to a bar (left), pushes a
mouse button and drags the bar to the position that they think is the correct one (right).

type State = bool ∗ (string ∗ int) list

type Event = Update of (string ∗ int) | Moving of bool

The state is a pair of boolean, indicating whether the user is currently dragging, and a list
of key value pairs, storing the number of seats for each political party. Two types of events
can occur in the visualization. First, the user may start or stop dragging, which is indicated
using Moving(true) and Moving(false), respectively. Second, the user may change a value
for a party, which is represented by the Update event.

The next part of the implementation is the update function which takes an old state
together with an event and produces a new state:

let update ( ,s) (Moving(m)) = m,s
update (true,s) (Update(p,v)) = true,map (λ (k,o)→ k, if k = p then v else o) s
update (m,s) (Update( , )) = m,s

The first case handles the Moving event, which replaces the first component of the state
tuple, i.e. a flag indicating whether a mouse button is down. The next two cases handle the
Update event. The event carries two values, p,v, which represent the party (which bar the
user is dragging) and the new value (new number of seats). If the user is currently dragging,
we replace the value associated with the party p in the list s using the map function. If the
user is not currently dragging, the event is ignored.

Finally, the view function takes the current state and builds the data visualization using
the Compost domain-specific language. In addition, it also takes a parameter trigger, which
is a function of type Event→ unit that can be used to trigger events in handlers, registered
using primitives such as mouseMove. To build the bar chart in Figure 11, we use the
same approach as in Section 2.2. The only addition are the event handlers registered using
mouseMove, mouseUp and mouseDown:

let view trigger ( ,state) =

axisl (axisb (explicitScaley (continuous 0,400),
( mouseMove (λ (cat p, ) (cont v)→ trigger(Update(p,v))),
( mouseUp (λ → trigger(Moving(true))),

( mouseDown (λ → trigger(Moving(false))), overlay [

for party,mps in state → padding 0,10,0,10, (fill (color party),

[ (cat party,0),(cont 0),(cat party,0),(cont mp),

(cat party,0.5),(cont mps),(cat party,0.5),(cont 0) ]) ])))))
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When the user interacts with the visualization created using Compost, the library trans-
lates the coordinates associated with events from pixels to domain-specific values. In case
of the above bar chart, when the user moves a mouse, the function registered using mouse-

Move is given a categorical value cat p,r as the x coordinate and a continuous value cont v
as the y coordinate. It then takes p, which is the name of the party corresponding to the bar
and the value v corresponding to the number of seats and triggers the Update(p,v) event to
update the state. The handlers for mouseUp and mouseDown do not use the coordinates.
They simply switch the flag indicating whether the user is currently dragging or not.

The pair of functions, update and view, together with an initial state is all that is needed
to create an interactive data visualization. Compost calls view each time the state changes
and uses virtual-dom to update the chart displayed in the browser. Although creating an
interactive visualization is more work than creating a static one, the domain-specific nature
of Compost is invaluable. We can simply take the values p and v produced by a mouse
event, use those to update the state and then, again, render an updated chart.

6 Implementation structure: Scale inference and rendering

Compost is an open-source library, implemented in the functional language F#. The full
source code can be found at http://github.com/compostjs. As is often the case with func-
tional domain-specific languages, the implementation is not difficult once we find the right
collection of basic primitives and the right structure for the implementation. This largely
applies to the Compost library and so we will not go into the implementation details. It is,
however, worth giving an outline of the implementation structure.

As mentioned in Section 2.3, the rendering of shapes proceeds in two stages. First, the
library infers the scales of a shape. When doing so, it also annotates some shapes with
additional information that is needed later for rendering. Second, the library projects the
shape onto an available space and produces the chart, represented as an SVG object.

6.1 Inferring the scales of a shape

In order to render a shape, we need to know the range of values that should appear on the
x and y axes. This is done by inferring a scale for each of the axes from the individual x
and y coordinates that specify shape locations. As discussed earlier, a scale can be either
categorical (displaying only categorical values) or continuous (displaying only continuous
values). When inferring scales, we use two helper operations; union, discussed earlier,
combines two scales and singleton creates a scale from a single coordinate.

The operation that infers the scales of a shape is calculateScales. It takes a shape and
produces a pair of x and y scales, together with a transformed shape:

calculateScales : Shape→ (Scale∗Scale)∗Shape

The operation does not need to transform the shape in most cases. The exception is the
shape nestx/y vmin,vmax,s. In this case, the returned scale is based solely on the values of
vmin and vmax. For rendering we need to keep the inferred scales of the nested shape s. To
do so, the operation replaces the nestx/y shape with an auxiliary shape scaledNestx/y:
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s = scaledNestx/y vmin, vmax, sx/y, s | (. . .)

There are two kinds of cases handled by calculateScales. For primitives, it constructs a pair
of scales from individual coordinates using union and singleton. For shapes containing a
sub-shape, the operation calculates the scales of a sub-shape recursively and then adapts
those somehow. To illustrate, we consider two interesting cases:

calculateScales (nestx vmin, vmax, s) =
let (sx,sy),s′ = calculateScales s
(union (singleton vmin) (singleton vmax),sy), scaledNestx vmin, vmax, sx, s′

calculateScales (overlay l) =
let scales, l′ = unzip (map calculateScales l)
let sx,sy = unzip scales

(reduce union sx, reduce union sy),overlay l′

When calculating the scales of the nestx, the function first calculate scales of the sub-shape
s recursively. The resulting y scale sy is returned as the result, while the x scale is obtained
from the two coordinates vmin and vmax. This is also the case where the shape is transformed
and the returned scaledNestx shape stores the inferred x scale sx of the sub-shape s. The
second example is the overlay case which recursively computes scales of all sub-shapes
and combines those using the list folding function reduce with union as an argument.

6.2 Projecting coordinates and drawing

The key operation that needs to be performed when drawing a shape is projecting coor-
dinates from domain-specific values to the screen coordinates. As we draw a shape, we
keep the x and y scale and the space in pixels that it should be drawn on. Initially, the x
and y scales are those inferred for the entire shape and the space in pixels is 0 . . .width and
0 . . .height where width×height is the size of the target SVG element.

The key calculation is done by the project function, which takes the space in pixels (as
a pair of floating-point numbers representing the range), the current scale and a domain-
specific value and produces a coordinate in pixels:

project : float∗float→ Scale→ Value→ float

The function is only defined if the value and scale are compatible. As discussed in Sec-
tion 2.4, this could be guaranteed using a simple type system. If both are continuous, the
function performs a simple linear transformation. If both are categorical, the available pixel
space is divided into a equally-sized bins, one for each categorical value on the scale, and
the value is then projected into the appropriate bin.

The drawing of shapes is done by a function that takes the available area as a quadruple
(x1,y1),(x2,y2) together with the x and y scale mapped onto the area and a shape to be
drawn. The result is a data structure representing an SVG document:

drawShape : (float∗float)∗ (float∗float)→ Scale∗Scale→ Shape→ Svg
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For primitive shapes, the operation projects the coordinates using project and constructs
a corresponding SVG document. For shapes with sub-shapes it calls itself recursively,
possibly with an adjusted scale or area. The two cases discussed earlier illustrate this:

drawShape a s (overlay l) =
concat (map (drawShape a s) l)

drawShape ((x1,y1),(x2,y2)) (sx,sy) (scaledNestx vmin, vmax, nsx, shape) =

let x′1 = project (x1,x2) sx vmin

let x′2 = project (x1,x2) sx vmax

drawShape ((x′1,y1),(x′2,y2)) (nsx,sy) shape

When drawing overlay, the function draws all sub-shapes onto the same area using the
same scales and then concatenates the returned SVG components using the concat helper.
The scaledNestx case is more illuminating. Here, we first use project to find the range x′1,x

′
2

corresponding to the domain-values vmin,vmax. This defines the area corresponding to the
nested scale nsx, onto which the x coordinates in the sub-shape shape should be projected.
To do this, we recursively call drawShape, but use x′1 and x′2 as the x coordinates of the
target area and nsx as the x scale. The y area and scales are propagated unchanged.

7 Conclusions

This paper presents a functional take on the problem of designing easy to use, but flexible
abstractions for composing data visualizations. We hope to find a sweet between high-level,
but inflexible approaches and low-level, but hard to use approaches.

Most work in this space is based on Grammar of Graphics (Wilkinson, 1999), designing
more or less complex and powerful variants (Wickham, 2010; Satyanarayan et al., 2016;
Satyanarayan et al., 2015; Stolte et al., 2002). In Grammar of Graphics, a chart is a
mapping from data to a chart elements and their visual attributes. In contrast, in Compost,
the mapping is specified in the host programming language and a chart is merely a resulting
data type describing the visual elements using domain-specific primitives.

Our approach is very flexible as it lets the user compose primitive visual elements in any
way they want; it lets them define their own high-level abstractions and it also integrates
well with reactive programming architectures to support interactive data visualizations.

In this paper, we focus on presenting the core ideas behind Compost. However, much
remains to be explored, both in terms of finding the best set of primitives and in terms of
their language integration. First, we only support categorical and continuous values, but
there are also ordinal values (which cannot be compared, but can be sorted). Second, some
of our primitives, namely axis and roundScale could be implemented as derived operations,
but we treat those as built-in for simplicity. Third, we only treat x and y as scales, but we
could similarly treat other visual features (colors of bars, size of bubbles) as scales, which
would allow a more high-level specification of certain charts.

Even in the basic form, the Compost library makes it possible to create a wide range
of standard, atypical and even interactive charts. Moreover, we hope that other functional
programmers agree that it does so in a simple, logical and easy-to-understand way. In other
words, we hope the presented functional library is, indeed, a functional pearl.
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